ECAL noise

- Current defaults values for digitization:
 - Barrel: 30 MeV/crystal (Now as energy! in ECAL TDR it was E_T)
 - Endcap:150 MeV/crystal
- No reason to believe that endcap target of 150 MeV will not be comfortably met, and no reason to suppose that it will appreciably increase during running
- Barrel electronics noise is expected to be 11.5 ke
 - Taking:
 - APD gain = 50
 - Light collected by APDs = 6 p.e./MeV (recent testbeam results)
 - \rightarrow 11.5k/(6x50) = 38 MeV
- After some years running the APD leakage current builds up (as a result of neutron damage)
 - Figure 4.20 from ECAL TDR shows 60MeV/ crystal after 10 years
 - This effect is not included in default ORCA values...

Zero Suppression and Selective Readout

 Presentation on hardware capability etc by Philippe Busson can be found at: http://cmsdoc.cern.ch/Physics/egamma/transparencies/m47-3.pdf

• Summary:

- Full ECAL data: 77k crystals x 10 time samples x 2 bytes ≈ 1.5 Mbytes
- Canonical allowed data size for ECAL: 100kbytes
- So data must be reduced by ~15
- A central Selective Readout Manager recieves 3 bits from each trigger tower and then assigns each trigger tower a 'readout state' defined by 2 bits
- The <u>readout state</u> would define options like:
 - Readout this tower with no zero suppressio
 - Readout this tower with zero suppression (with threshold at some specified level)
 - Do not readout this tower

Current situation in ORCA

- Currently in ORCA Zero Suppression is applied with a '2 o(noise)' cut (i.e. 60 MeV in barrel and 300 MeV in endcap)
- (By chance) this gives about the factor of 15 eventually required: 6.8% crystals read out for jet events @ 10³⁴
- Note also: we should not get too hypnotized by '2 $\sigma(noise)$ ' the crystals passing the cut are dominated by real energy deposits, not noise! (So the cut value to give the same reduction would not scale with an increased noise level).
- egamma studies are not completely happy with this algorithm because of resulting non-linearity of the energy scale
 - the higher the shower energy the more crystals pass the cut
 - Corrections for this can be made, but it makes understanding things more difficult than is necessary...

A realistic ZS/SR scenario?

• Most thinking in the past seems to have viewed Zero Suppression and Selective Readout as two complementary tools used additively:

- Zero Suppression/Selective Readout code in ORCA has been setup on this model...
 - (Hope to change this soon...)
- But perhaps the most promising realistic scheme would be to use Zero Suppression at some level like 2.5 \circ (noise) and then use the Selective Readout to insist that towers around a high E_T tower (\sim 5GeV ?) are readout without Zero Suppression

- Seems fairly clear (but studies ongoing) that this would give adequate data reduction at high luminosity, and do negligible damage to egamma physics...
- But what about jets and E_T^{miss} ??